skip to main content


Search for: All records

Creators/Authors contains: "Pontoppidan, Klaus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Evidence abounds that young stellar objects undergo luminous bursts of intense accretion that are short compared to the time it takes to form a star. It remains unclear how much these events contribute to the main-sequence masses of the stars. We demonstrate the power of time-series far-infrared (far-IR) photometry to answer this question compared to similar observations at shorter and longer wavelengths. We start with model spectral energy distributions that have been fit to 86 Class 0 protostars in the Orion molecular clouds. The protostars sample a broad range of envelope densities, cavity geometries, and viewing angles. We then increase the luminosity of each model by factors of 10, 50, and 100 and assess how these luminosity increases manifest in the form of flux increases over wavelength ranges of interest. We find that the fractional change in the far-IR luminosity during a burst more closely traces the change in the accretion rate than photometric diagnostics at mid-infrared and submillimeter wavelengths. We also show that observations at far-IR and longer wavelengths reliably track accretion changes without confusion from large, variable circumstellar and interstellar extinction that plague studies at shorter wavelengths. We close by discussing the ability of a proposed far-IR surveyor for the 2030s to enable improvements in our understanding of the role of accretion bursts in mass assembly.

     
    more » « less
  2. Abstract

    We present MIRI Medium-resolution Spectrograph observations of the large, multi-gapped protoplanetary disk around the T Tauri star AS 209. The observations reveal hundreds of water vapor lines from 4.9–25.5μm toward the inner ∼1 au in the disk, including the first detection of rovibrational water emission in this disk. The spectrum is dominated by hot (∼800 K) water vapor and OH gas, with only marginal detections of CO2, HCN, and a possible colder water vapor component. Using slab models with a detailed treatment of opacities and line overlap, we retrieve the column density, emitting area, and excitation temperature of water vapor and OH, and provide upper limits for the observable mass of other molecules. Compared to MIRI spectra of other T Tauri disks, the inner disk of AS 209 does not appear to be atypically depleted in CO2nor HCN. Based on Spitzer Infrared Spectrograph observations, we further find evidence for molecular emission variability over a 10 yr baseline. Water, OH, and CO2line luminosities have decreased by factors of 2–4 in the new MIRI epoch, yet there are minimal continuum emission variations. The origin of this variability is yet to be understood.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)